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Abstract

The rapidly-exploring random tree (RRT) is a randomized data structure used in motion
planning, one of the fundamental problems in robotics. The classical RRT uses nearest-
neighbor search as one of its subroutines, but practical implementations of the RRT often
substitute an approximate nearest-neighbor (ANN) subroutine to achieve drastic performance
improvements. Very few theoretical results about the classical RRT are known, and virtually
no analysis has been done on the RRT with ANN substituted for nearest-neighbor search. We
survey previous work done separately on RRTs and ANN search before stating several new
results about RRTs constructed with an ANN subroutine.

1 Introduction

In robotics, motion planning is the process by which the specifics of a movement are computed
to satisfy constraints (e.g. avoid collisions) and optimize some feature of the computed path.
There exist two natural spaces for describing motions. The workspace is the vector space that
describes the physical space that the robot occupies; a typical workspace might have the topology1

R3× (S1)
3, with three coordinates to describe its (x,y,z) position and three coordinates to describe

its orientation in terms of pitch, yaw, and roll. The configuration space is the vector space defined
by the generalized coordinates of the system. For example, a robotic arm with 7 joints and 3
extendable links might have a natural configuration space that is isomorphic to (S1)

7× I3, where
I ⊂ R is some closed interval.

A primary difficulty with motion planning is that the state of the robot is often most easily described
as a point in configuration space, whereas obstacles are often most easily specified as constraints in

1In this paper, R refers to the real numbers, and S1 to the topology of the circle, often used in robotics to describe
rotations.
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the workspace. Transforming a point in configuration space to the workspace (forward kinematics)
can be tractable, but the inverse operation is typically infeasible (indeed, there may be many points
in configuration space that correspond to the same point in the workspace) [Lat12].

Early motion planners worked directly in the workspace, using techniques like swept volumes to
determine whether a path was collision-free [LL05]. These techniques are not easily generalizable,
however, as they rely on detailed knowledge about the specifics of the robot and its environment.
Planning in configuration space offers the possibility of more general techniques, but it introduces
a new question: given that inverse kinematics of a single point in the workspace is difficult, how
should entire obstacles be transformed from the workspace to the configuration space?

In low-dimensional spaces, there exist efficient, exact algorithms for computing motions [LaV06].
In high dimensions, however, such algorithms quickly become computationally intractable. In-
stead, most practical motion planning methods in high dimensions are sampling-based. Sampling-
based motion planning algorithms indirectly take advantage of the feasibility of forward kinematics
by using a collision detection module as a black box. This sidesteps the difficult problem of obtain-
ing explicit representations of the obstacles in configuration space. In typical practical planning
problems, sampling-based motion planners have relatively good performance compared to exact
planners, but this comes at the expense of relaxed guarantees about the optimality and existence or
non-existence of solutions.

One example of a sampling-based configuration space planner is the the probabilistic roadmap,
which constructs a graph by generating random configurations and connecting nearby configura-
tions in a “local planning” step [AW96]. If there are a few simple constraints, then this technique
can work well. However, in general there can be many complicated constraints (e.g. differential or
nonholonomic ones), which cause the local planning step to be as difficult as the original planning
problem.

2 Rapidly-Exploring Random Trees

The rapidly-exploring random tree (RRT) method was first introduced by Steven LaValle in 1998
[LaV98]. The RRT takes a control-theoretic approach to motion planning by defining a state
transition equation ẋ = f (x,u), where u is a vector of inputs. Integrating f over some time in-
terval is equivalent to applying the input for that time interval. By encoding constraints into the
structure of f (x,u) itself, RRTs avoid the need to connect discrete milestones. This is a major ad-
vantage of the RRT over other sampling-based planning techniques like the probabilistic roadmap
[KŠLO96].

Consider the path planning problem in a metric space X (which we call the configuration space
or state space) between the start state xinit and the goal state xgoal. X can be partitioned into a
free space Xfree and an obstacle region Xobs. Assume the existence of a black box subroutine that
returns whether a given state x lies in Xfree or Xobs. As presented in LaValle’s first paper [LaV98],
the method to construct an RRT T with K vertices can be described succinctly:
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• Initialize a tree T and insert the initial state xinit.

• Repeat K times:

– Select a random state xrand ∈ X .

– Find the nearest neighbor xnear of xrand among the vertices of T .

– Select a control u that minimizes the distance from xnear to xrand, while simultaneously
ensuring that the state does not collide with any obstacles.

– Apply the control u for some time ∆t to xnear obtain a new state xnew.

– Add xnew to T , along with an edge from xnear to xnew.

The algorithm given above can not be used directly to answer motion planning queries, since it
merely grows T to explore the state space. There are a variety of techniques to modify the algorithm
above so that it can be used to answer motion planning queries. RRT_BIDIRECTIONAL grows
two RRTs, one from xinit and one from xgoal, periodically attempting to connect the trees together.
Another alternative is to select xrand← xgoal with a small probability at each iteration [LK01].

The name “rapidly-exploring random tree” stems from the algorithm’s growth pattern, as the search
tree’s growth is strongly biased towards unexplored regions in configuration space. This fact can be
seen by drawing the Voronoi diagram of T : at any step, the largest Voronoi cells will be associated
with the leaf nodes of T . This rapid exploration is therefore a consequence of the nearest-neighbor
search. In fact, it has been shown that an apparently “random” expansion algorithm that grows the
tree from a random vertex in a random direction is highly biased towards regions it has already
visited [LK01].

3 Approximate nearest-neighbor search

The nearest-neighbor search, crucial as it is to growth pattern of the RRT, is typically the slowest
subroutine called by the procedure. A naïve, brute-force solution to the nearest-neighbor search
problem takes time linear in the size of the search tree. In low-dimensions, geometric structures
like kd-trees may be used to speed up queries [FBF77], but such approaches often perform worse
than naïve linear search in high dimensions because many of these data structures have an expo-
nential dependence on the dimensionality of the space [DL76, Cla88, AM93]. However, there exist
approximate algorithms and data structures for computing the nearest neighbor that scale better to
high dimensions. Indeed, these approximations are often used in practice [MA98, ML09].

Approximate relaxations of nearest-neighbor search come in many flavors. One of the most popular
is the (1+ ε)-approximate nearest neighbor problem: Given a set S of points, a query point q, and
a distance function d(·, ·), find a point p ∈ S such that ∀p′ ∈ S, d(p,q)≤ (1+ ε)d(p′,q). It is also
common to relax the problem further by only requiring that the returned point be an ε-approximate
nearest neighbor with some given probability.
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There has been a fair amount of previous work on approximate nearest-neighbor (ANN) search.
One prominent technique is locality-sensitive hashing (LSH) [GIM+99]. The general strategy of
locality-sensitive hashing is to hash points from a set in a manner such that the probability of
collision is much higher for points that are nearby than for points that are far away. Queries for
the nearest neighbors to a point can then be performed by scanning the bucket into which the
query point was hashed. These sorts of techniques saw a flurry of research activity in the early
2000s, starting with the first LSH paper in [GIM+99] and finally with a near-optimal algorithm
in [AI06]. In fact, an optimal LSH algorithm for ANN has been found [AR15], but it is data-
dependent and therefore does not allow for updates to the pointset (and therefore can not be used
without modification in the RRT method.)

Other ANN schemes rely not on hashing but on sophisticated data structures. One, called best-
bin first, is best understood as a variant of the k-d tree search algorithm [BL97]. Yet another
ANN technique is known as the balanced box-decomposition tree [AMN+98], which computes a
(1+ε)-approximate nearest neighbor in the O(cd,ε logn) time, where cd,ε = O(d(1+d/ε)d), with
a preprocessing time of O(dn logn) and requiring O(dn) space. These bounds are asymptotically
optimal in the algebraic decision tree model of computation. The balanced box-decomposition
tree manages this runtime by subdividing the state space into regions of O(d) complexity by axis-
aligned hyperrectangles.

4 RRT-ANN

We now turn to the application of ANN techniques to the RRT. The results discussed here do not
rely on the particulars of any one ANN technique and therefore apply to RRTs constructed with
any ANN algorithm that satisfies the basic conditions described below. Let RRT-ANN refer to
the modified RRT (along with its corresponding construction procedure) where nearest-neighbor
search has been replaced with ANN. We now show that several results about RRTs extend naturally
to RRT-ANNs.

Claim 4.1. The growth of an RRT-ANN is biased towards leaf nodes and unexplored regions of
state space.

One of the most desirable properties of a classical RRT is that its expansion is heavily biased
towards unexplored portions of the state space X . As noted above, leaf nodes will have the largest
Voronoi cells, and will therefore have the largest chances of being selected for expansion. This idea
extends naturally to RRT-ANNs. Instead associating each node of the RRT-ANN with its Voronoi
cell, we associate each node v ∈ T with the set of points ApproxVor(v) : {p ∈ X |v ∈ ANNT (p)},
where ANNT (p) is the set of points in T that might be returned by the ANN subroutine when
queried with p. Because ApproxVor(v) is a superset of the Voronoi cell of v, leaf nodes of an
RRT-ANN will still have a higher likelihood of being selected for expansion as long as the ANN
subroutine is reasonably selective (e.g. an ε-approximation). The more exact the ANN, the closer
ApproxVor(v) is to to the Voronoi cell of v, which leads naturally to Claim 4.2.
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Claim 4.2. The exactness of the ANN procedure is a parameter that trades runtime performance
for bias towards unexplored regions of the state space.

We turn now to the analysis of the probabilistic completeness of the RRT-ANN. Let dk(x) be the
distance from x to the closest vertex in the RRT-ANN T when T has k vertices. Furthermore, let us
first restrict ourselves to holonomic constraints, so that ẋ = f (x,u) = u, and to an ANN procedure
that has a non-zero probability of returning the nearest neighbor of a query point.

X

Xfree

xinit

xgoal

B’(x)

X

Xfree

xinit
xgoal

x1 x2
C0(x)

C1(x)

C2(x)

Figure 1: A state space X ⊂ R2 with a convex (left, Lemma 4.3) and non-convex (right, Lemma
4.4) collision-free subset.

Lemma 4.3. Suppose Xfree is a convex, bounded, connected, open subset of a state space X. For
any xgoal ∈ Xfree and positive constant ε > 0, lim

k→∞
Pr[dk(x)< ε] = 1.

Proof. This proof is modified from the one given in [LKJ00] for the classical RRT. Let xinit be
an initial RRT-ANN vertex, and let B(x) denote a ball of radius ε centered on x, and let B′(x) =
B(x)∩Xfree. Because B′(x) has positive, finite volume, there is a strictly positive probability at each
iteration that xrand lies in B′(x). Assume all RRT-ANN vertices lie outside of B(x), for otherwise the
lemma has already been satisfied. Then E[Dk(x)]−E[Dk+1(x)]> b for some positive real number
b > 0, since we assumed that there was a positive probability that the ANN procedure would return
the true nearest neighbor and therefore that T would grow from the true nearest neighbor to the
randomly chosen point in B′(x). This implies lim

k→∞
Pr[dk(x)< ε] = 1.

Lemma 4.3 is reassuring, but its result is distinctly weaker than empirical RRT performance. In
practice, aggressive RRT-ANNs with a large ∆t can make progress towards xgoal in a open, convex
free space even when the ANN procedure does not return the true nearest neighbor. Nevertheless,
we can construct a pathological case in which the ANN routine consistently returns a point other
than the true nearest neighbor, which is then extended towards xrand without decreasing dk(x). We
now extend Lemma 4.3 to a nonconvex free space.
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Lemma 4.4. Suppose Xfree is a nonconvex, bounded, connected, open subset of a state space X.
For any xgoal ∈ Xfree and positive constant ε > 0, lim

k→∞
Pr[dk(x)< ε] = 1.

Proof. Let x0 = xinit be an initial RRT-ANN vertex. Because x0 and x lie in the same con-
nected component, there exists a collision-free path P between them, and there exists a sequence,
x0,x1,x2, ...,xn, of states such that xn = x and, for any point xi and its successor xi+1, both xi and
xi+1 can be contained by a convex, bounded, open, collision-free subset Ci(x) of X . (Consider
sampling P at increasingly fine resolution until the sequence satisfies the desired properties.)

We proceed by induction on the convex subsets Ci(x). Assume as an inductive hypothesis that the
RRT contains some node in Ci(x). Because xi+1 ∈Ci(x), the RRT will eventually come arbitrarily
close to xi+1 by Lemma 4.3, and so the RRT will have a node in Ci+1(x) since xi+1 ∈Ci+1(x). All
that remains is to note that x0 ∈C0(x) so that we may conclude that eventually the RRT will have
a node in Cn−1(x). One final application of Lemma 4.3 gives the desired result.

Though Lemmas 4.3 and 4.4 hold for the RRT-ANN as well as they hold for the RRT, we expect the
rate of convergence to be slower for the RRT-ANN, since the growth may occur from a node other
than the nearest one. Nevertheless, these lemmas show that RRT-ANNs retain the probabilistic
completeness of RRTs.

We now characterize the rate of convergence of the RRT-ANN, adapting techniques from [LK01]
(with some of the mistakes from that paper corrected). Let A = {A0,A1,A2, ...,Ak} be a sequence
of subsets of X called an attraction sequence2, and let A0 = {xinit} and Ak = {xgoal}. The attraction
sequence must be constructed such that, for each Ai, there exists a basin Bi ⊆ X such that

1. If the RRT contains a vertex in Ai−1 and xrand is selected to be in Ai, then the ANN procedure
always returns a point in Bi.

2. For all x ∈ Ai and y ∈ Bi, there must exist an input u to the state-transition equation that takes
y to x.

Intuitively, any valid attraction sequence that we can construct helps give an upper bound on the
expected number iterations required to connect xinit to xgoal. Each basin Bi can be considered to
be a potential well: if the RRT-ANN contains a vertex in Ai−1, then the existence of the basin Bi
ensures that the RRT-ANN will add a vertex to Ai if xrand is selected to lie in Ai.

Let µ(·) denote the volume (or measure) function on X .

Theorem 4.5. If an attraction sequence of length k exists and the RRT-ANN is configured with a
step size large enough to always attempt to connect to xrand, then the expected number of iterations

required to connect xinit to xgoal is at most
k

∑
i=1

µ(Xfree)

µ(Ai)
.

2Ak has zero measure, which interferes with the proofs that follow. This technicality is glossed over here, but this
can be remedied by either letting Ak be a ball of small radius centered on xgoal, or else choosing xrand ← xgoal with
small probability at each iteration.
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Figure 2: Two attraction sequences from xinit to xgoal in R2 with solid Ai and dashed Bi. The at-
traction sequences were constructed assuming an ANN that returns an (1+ε)-approximate nearest
neighbor with ε = 0.01 (left) and ε = 0.5 (right). On the right, note the increased length of the
attraction sequence and the smaller Ai, implying a larger upper bound on the expected number of
iterations to find a valid path.

Proof. If an RRT-ANN vertex lies in Ai−1 and xrand lies in Ai, then the RRT-ANN will be connected
to xrand. To see this, we can use the first property of the basin to see that the ANN procedure returns
a point in Bi. Then, we can use the second property of the basin to see that there exist inputs to get
from whichever node the ANN procedure returned and xrand.

In any iteration, the probability that xrand lies in Ai is p = µ(Ai)
µ(Xfree)

. If we consider the iterations to
be Bernoulli trials with a probability of success p, then the expected number of trials to achieve a
successful trial is 1/p = µ(Xfree)

µ(Ai)
. To get from xgoal to xinit, we can go through A1, A2, ..., to Ak, and

the main result follows from linearity of expectation.

Theorem 4.6. If an attraction sequence of length k exists and the RRT-ANN is configured with a
step size large enough to always attempt to connect to xrand, then the probability that the RRT-ANN

fails to find a path after n iterations is at most exp(2k−np
2 ), where p = min

i

µ(Ai)

µ(Xfree)
.

Proof. Consider the random variable C that represents the number of successes of the n Bernoulli
trials described above in the proof for Theorem 4.5. C has a binomial distribution, so we apply
a Chernoff-type bound on its tail probabilities by applying Theorem 4.2 from [MR10]. Noting
that µ = E[C] = np, Pr[C ≤ (1− δ )µ] < exp(−µδ

2/2). The RRT-ANN has found a path once
C ≥ k. Setting δ = k/(np) < 1, we can expand the exponent to −np/2+ k− k2/(2np). Because
−k2/(2np) is negative, we can safely state exp(−µδ 2/2)≤ exp(2k−np

2 ).
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5 Further Studies

Like with RRTs in general, there is much theoretical work to be done on RRT-ANNs, as the practi-
cal performance of these algorithms continues to far outstrip theoretical analysis. For example, the
probabilistic completeness guarantees shown above hold for the holonomic planning case. Clearly
there are nonholonomic robots that can not explore their entire state space even with an infinite
amount of time (e.g. a car with its steering wheel fixed at a certain angle), but how much can we
relax the holonomic constraint and maintain probabilistic completeness?

It would also be useful to have precise bounds on the rate of exploration of both RRTs and RRT-
ANNs, as well as information about the dependence of the rate of exploration on the configurable
parameters of the RRT-ANN, like the exactness of the ANN procedure and the step size ∆t. The
upper bound given in Theorem 4.5 on the expected number of iterations to find a path between
two points depends on an attraction sequence between the two points, which is rather unwieldy
to construct. A simpler method for characterizing RRT-ANN path planning performance would,
for example, allow RRT-ANNs to be integrated into realtime embedded systems with strict time
constraints.
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