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Abstract

Kaggle is an online platform for hosting data science competitions. On September
9, Kaggle opened a contest called “What’s Cooking?”. The goal of this contest
is to predict the type of a cuisine (e.g. “Chinese” or “Mexican”) from the list of
ingredients in a recipe. In this paper, we describe our methodology for training an
algorithm to make such predictions, which ultimately achieved a score of .78107
on Kaggle, placing 366th out of 841 teams.

1 Data

The training JSON file is an array of objects, each with the list of ingredients and the cuisine. The
testing file contains objects in the same format with the cuisine removed.

"id": 24717,

"cuisine": "indian",

"ingredients": ["tumeric", "vegetable stock", "tomatoes", "garam
masala", "naan", "red lentils", "red chili peppers", "onions",
"spinach", "sweet potatoes"]

2 Methodology

2.1 Data Exploration

Before training any machine learning algorithms, we first examined the data to get a feel for its
general structure. The training file contains 39,774 entries described in 666,921 lines. The testing
file contains 9,944 entries across 157,117 lines. These are fairly modest numbers that do not require
sophisticated parallelism or out-of-core algorithms. A cursory glance at 5 random entries in the
training and test file showed that the structure and contents of the files are similar, and that the
ingredients list does not contain stopwords (i.e. words with relatively little semantic meaning, like
“the”). However, some of the ingredients have accents. We decided to normalize these words by
turning them into their unaccented counterparts to prevent issues where one version of the word is
accented and another is not.

On the basis of this initial data exploration, we decided to use a fairly standard approach in Python
using scikit—-learn.

2.2 Transforming Input Data

The approach we used for representing the textual data is from scikit-learn’ s tutorial, “Work-
ing With Text Data”.



Loss function | Empirical accuracy  Generalization accuracy

hinge 0.73 0.71
log 0.62 0.62
modified_huber 0.78 0.76
squared_hinge 0.77 0.76
perceptron 0.80 0.73

Table 1: Empirical and generalization accuracies for a variety of loss functions for the SGD classifier

We wrote a basic custom parser to remove accents from the lists of ingredients and concatenate each
list into one string, or document. This method removes a small amount of structure from the text,
since we can no longer represent the list boundaries between ingredients. Nevertheless, this is a
relatively small price to pay, as we are not giving up clause, sentence, or paragraph structure (which
is typical in other text classification tasks).

The most basic and popular method of representing text for machine learning is the bag-of-words
approach. Using this approach, we represent lists of ingredients by vectors of counts of each of the
different words in the vocabulary. This is quite feasible given the relatively small size of our data
set: the resulting vocabulary contained ~3000 words.

We further improved on these vectors with two optimizations built into scikit—learn. First,
we divided each of the word counts by the total number of words in that document to get term
frequencies. This helps us normalize over various document lengths. The second optimization we
performed was to weight words based on the inverse of number of documents they occur in. This
helps us remove focus from words that are common to many documents and are therefore not very
informative for distinguishing cuisines.

To evaluate each algorithm’s ability to generalize, we divided the training data into two vectors:
one containing 35000 points on which to train the algorithms, and another of the remaining 4774
points for evaluation. In the remainder of this report, “empirical accuracy” refers to the percentage
of the 35000 training points that are correctly labeled, while “generalization accuracy” refers to the
percentage of the other 4774 points that are correctly labeled.

2.3 Naive Bayes Classifier

Our first attempt at a classifier was the Naive Bayes Classifier. Though Naive Bayes is not typically
regarded as a strong text classifier, it served us well as a foundation for further studies. The Naive
Bayes classifier achieved fairly good performance, with an empirical accuracy of 0.69 and a gener-
alization accuracy of 0.68. The similarity in these values suggests that there is not much overfitting
occurring.

2.4 SGD Classifiers

We next used the standard tool for text classification, a linear classifier optimized using stochas-
tic gradient descent. scikit-learn’s SGDClassifier allows for many different loss
functions. We tested the ones appropriate for classification: hinge, log, modified_huber,
squared_hinge, and perceptron. The accuracies for the different loss functions are shown
below. Most of the loss functions do not show a significant amount of overfitting, except the
perceptron loss function. In the end, we settled on the modified_huber loss function as
the most promising.

2.5 Alternative Regularization Schemes

Next, we tuned the parameters for the SGD classifier with the modified_huber loss function.
The results above used the default L2 regularization. We tested L1 regularization but the results
were poor, with empirical and generalization accuracies of 0.69. Furthermore, we had no interest
in producing a sparse model, so we did not pursue L1 regularization (and therefore the ElasticNet)
further.



2.6 Parameter Optimization

The regularization parameter determines how heavily the optimization weights the L2 regularization
term. We performed a search of the parameter space (Figure 1) and determined that the optimal
regularization parameter was le-4.
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Figure 1: Plot of empirical (red) and generalization (blue) accuracies versus regularization parame-
ter. The accuracies decrease sharply with regularization parameters greater than le-3.

2.7 Voting Classifier

With the SGD classifier, further improvement was not obvious. We therefore turned to en-
semble methods in an effort to improve the classifier’s performance. scikit-learn has a
VotingClassifier that combines different classifiers into one based on either hard or soft
voting. Basic tests indicated that soft voting yielded superior results. We then set out to determine
what other classifiers could easily be built for inclusion in the VotingClassifier.

As noted above, Naive Bayes was not very good. Decision trees were good, with generalization
accuracies around 0.65. However, we decided to upgrade the decision trees into randomized forests,
which, after tuning, achieve generalization accuracies around 0.79. We found that optimal param-
eters for the forest were a maximum tree depth of 60 and a maximum number of trees of 30. Any
more slowed down training without an increase in generalization accuracy (though empirical accu-
racy continue to increase, yet another example of overfitting).

The VotingClassifier itself has parameters to tune, namely the weights it places on the prob-
abilities outputted by the subclassifiers (i.e. the randomized forest and the linear SGD classifier).
The SGD classifier seemed to generate superior generalization accuracies in preliminary testing,
but we performed a grid search over several different weightings. The final weighting of 1 for the
randomized forest and 3 for the SGD classifier yielded the best generalization accuracy.



2.8 Performance concerns with K nearest neighbors

In testing on a small subset of the entire training set, the K nearest neighbors (KNN) classifier
seemed promising. In fact, its generalization accuracy was greater than that of the linear SGD clas-
sifier. However, we were unable to complete a single training of a KNN classifier on the entire large
dataset. On the first attempt, the process’s memory usage increased to 30 GB before it was stopped.
In an effort to keep the memory usage under 16 GB (the amount of RAM on the training computer)
and prevent excessive paging to disk, we switched to more memory efficient tree structures for the
KNN algorithm. Though both the kd_t ree and ball_tree data structures kept the memory usage
around 1.3 GB, we were nevertheless still unable to train a KNN algorithm on the entire dataset.

3 Conclusion

As our first attempt at training a machine learning algorithm, we are pleased with our performance.
Our results show the power of ensemble learning, since it is doubtful we would have been able to
improve the linear SGD classifier any more.

One potential avenue for exploration is to include the KNN algorithm in some sort of ensemble
classifier. Results that we achieved by training on a small subset of the training data were promising,
but we did not have the computing power necessary to train the KNN algorithm on the full dataset.
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A Code

import json

import io

import unicodedata

import sys

import numpy as np

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn import metrics

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.ensemble import VotingClassifier

from sklearn.ensemble import RandomForestClassifier

DIAGNOSTICS = True

def strip_accents(s):
return ’’.join(c for c¢ in unicodedata.normalize ('NFD’, s)
if unicodedata.category(c) != 'Mn’)

class LemmaTokenizer(object):
def __init__(self):
self .wnl = WordNetLemmatizer ()
def __call__(self, doc):
return [self.wnl.lemmatize(t) for t in word_tokenize (doc) ]

# Load data (train_small.json , train.json)

train_file = io.open(’train.json’, 'r’)

train_json = json.loads(strip_accents(train_file.read()))
test_file = io.open(’test.json’, ’r’)

test_json = json.loads(strip_accents(test_file.read()))
i=20

X1 = []

Y1l = []

X1ls = []

Yls = []

for o in train_json:
X1.append(”.”.join (o[ ingredients ’]))
Y1.append (o[’ cuisine ’])
i +=1
if i <= 3000:
X1s.append(”.”.join (o[ ingredients’]))
Y1s.append (o[ cuisine ' ])

id_test = []

X2 =[]

for o in test_json:
id_test.append(o[’id’])
X2.append(”.”.join (o[ ingredients " ]))

# Print diagnostics

if DIAGNOSTICS:
print *%d.=_%d’ % (len(X1), len(Y1))
print "%s.: . %s’ % (X1[0], Y1[O0])
print *%d.=_%d’ % (len(X2), len(id_test))

# TfidfVectorizer

print “vectorize”

sys.stdout. flush ()

vect = TfidfVectorizer (tokenizer=LemmaTokenizer()). fit (X1)
tfl = vect.transform (X1).todense ()

tfls = vect.transform (Xls).todense ()



tf2 = vect.transform (X2).todense ()

# Train
print “train”
sys.stdout. flush ()

clfl
clf3

RandomForestClassifier (max_depth=40, n_estimators=20). fit (tfl, Y1)

SGDClassifier (loss="modified_huber’, penalty="12", alpha=le—4,
n_iter=5, random_state=65). fit (tfl , Y1)

clf = VotingClassifier(estimators=[(’dt’, clfl), (’sgd’, clf3)], voting=’
soft’, weights=[1, 3]).fit(tfl, Y1)

# Predict

print “predict”
sys.stdout. flush ()

Y1_hat = clf.predict(tfl)
Y2_hat = clf.predict(tf2)

# Print diagnostics

if DIAGNOSTICS:
#print vect.vocabulary._
print "Empirical_accuracy: _%f” % np.mean(Y1_hat == YI)
#print metrics. classification_report(Yl, YI_hat)

# Output predictions

out = io.open(’ submission.csv’,

out.write(u’id, cuisine\n”)

for i in range(len(X2)):
out.write ("%s,%s\n’ % (id_test[i], Y2_hat[i]))
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