
Robot Batter
ECE 383 Final Project C

Kevin Do
kkd10@duke.edu

1 Summary

The robot’s task is to shoot balls into a goal (Figure 1).

The robot has three hardcoded paths that send the ball to the left, center, or right of the goal. State
estimates of the world are obtained from the camera/blob detector using predetermined geometric
relations. From these state estimates, the robot makes predictions about the world state in the
future and determines when to shoot and which stroke to pick. The robot design is modular, and
each module performs one of these subtasks (Figure 2).

Figure 1: The goal of the robot is to strike the ball (red) and shoot it into the goal (brown) past the
goalies (orange, yellow, green).

1



World simulation PID Controller

StateEstimator

StatePredictor

Actuator commands

Sensor data

FSM
State Estimates

State Estimates

State Predictions

Sensed robot
con�guration Desired con�guration

Figure 2: Block diagram of system design.

2 Components

World simulation This module is given in the assignment and simulates the environment and the
goalies. Sensor data is generated by the world simulation. The inputs to the world simulation
are data files (e.g. XML) defining the world and robot. The output of the world simulation
to the robot consists of CameraColorDetectorOutput objects containing CameraBlob ob-
jects. Each CameraBlob object has a color, width, height, x coordinate, and y coordinate.

PID Controller This module is built into Klampt. It takes a desired configuration and desired
velocity (each a vector of size 7) and uses PID parameters to define torques to send to the
actuators. This controller is invoked every time step by the FSM.

FSM The finite state machine contains the majority of the complex high-level logic. Based on
its current state, the robot decides between several different subgoals (e.g. strike the ball
or prepare for the next strike). The FSM is invoked every step and can be considered the
entrypoint of the user-defined logic.

StateEstimator This module takes the CameraBlog objects from the blob detector (in camera
coordinates) and produces a current state estimate (in world coordinates).

StatePredictor This module takes state estimates and stores it in its internal memory. It then
uses this history to provide predictions about the world simulation’s state in the future. The
most important StatePredictor is the SinePredictor, which assumes that the data is well-
modeled by a sinusoid and makes predictions accordingly. This is the most error-prone of
the modules, since the curve fit can fail if it is not seeded with good initial guesses for the
parameters. This is invoked whenever the robot is in the waiting state.

2



3 Planning and Control Strategy

The general strategy is to hardcode several loops (Figure 3) into the robot that send the ball into
either the left, center, or right of the goal. Having multiple paths to choose from ensures a high
probability that at least one of these paths will be free. Then, the robot chooses the path with the
greatest distance between the ball’s path and the goalies.

A B C D

Figure 3: Timelapse of typical robot stroke: prestroke (A), poststroke (B), prerecovery (C), and
postrecovery (D).

3.1 Hardcoded path generation

We wanted to avoid the runtime cost and potential lack of solutions that comes with runtime inverse
kinematics (IK). Therefore, we hardcoded paths into the robot. To generate the paths, we used
Klampt’s built-in IK solver to generate solutions that would place the robot arm near the ball’s
starting location. These solutions were then tuned manually.

In our tuning process for different configurations, we preferred solutions with the second joint up
rather than down to minimize the chance of terrain collisions. Furthermore, we preferred ball paths
as close to the target (left, center, or right) as possible. Finally, we preferred configurations that
yielded low variance in the ball paths (Figure 4).

2 1 0 1 2 3 4
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y

Left

2 1 0 1 2 3 4
x

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

y

Center

2 1 0 1 2 3 4
x

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

y

Right

Figure 4: Plots of ball paths following the three different strokes.

3



3.2 State prediction

A state predictor is a module with two primary functions:

• addPoint(self, t, o)

• predict(self, t, name)

The first function’s purpose is to train the state predictor by adding to its memory a state estimate
o taken at time t. The more states that the state predictor has in its memory, the better predictions
it can make about the future. The second function’s purpose is to retrieve the predictor’s best guess
about the state of the object identified by name at time t.

The robot has two types of state predictors: a linear predictor and a sine predictor. The linear
predictor assumes that the object in question takes a linear path, and predicts using linear extrapo-
lation. The sine predictor assumes that the object in question takes a sinusoidal path. Predictions
are made by fitting the general sine curve f (t) = Asin(Bt+C)+D (using scikit-learn’s curve_fit
function) to the history and then plugging in for the desired prediction time. The sine predictor has
two failure modes: it can take too long and it can fail to find an optimal curve fit. Both of these
failure modes are addressed by caching previous parameter solutions. Doing so helps improve the
convergence time for the curve fit since we expect solutions to be similar over time. Furthermore,
this caching allows us to still make reasonable predictions if the curve fit fails.

3.3 Choosing to shoot

The robot checks two conditions before deciding to strike the ball. First, the robot checks that
the ball is ready: it must satisfy the robot’s assumption about its starting position as well as be
still. Second, the robot checks that there is an open path. It can do so because the robot has
been hardcoded with the ball’s traveltimes to the goalies along each of the three possible paths.
Based on its predictions (see above) of the goalie’s positions, it can decide whether any path is
open. If multiple paths are open, the robot picks the one that maximizes the minimum distance to
a goalie.

3.4 Finite state machine

The finite state machine (FSM) contains the bulk of the high-level controller logic. Technically, the
FSM contains around 100 states, but many of these states can be grouped together. We therefore
group the FSM’s states into states and substates, where the state is a string and the substate is a
whole number.

In an effort to reduce variance in the robot’s paths, state transitions are required to satisfy two
conditions: (1) the robot’s sensed configuration must be suitably close to the desired configuration
at the state transition and (2) the robot’s sensed velocity must be below a given threshold. Ensuring
these conditions means that each state can be considered relatively isolated from the others, since

4



each state knows to a high degree of accuracy the robot’s configuration and velocity when it takes
control.

To control the speed of state transitions, we implemented a custom motion queue. The motion
queue takes the start, end, and number of frames as parameters and generates intermediate goals
to be fed to the PID controller. These intermediate goals are generated through a linear interpola-
tion in configuration space. Though this can lead to unintuitive motion in Cartesian world space,
the paths that we hardcoded into the robot assume a linear interpolation through configuration
space.

The states themselves are detailed below and in Figure 5.

precycle This is the robot’s initial state. This state is similar to the post_recover state.

waiting The robot is waiting to strike the ball. It waits for the ball to be ready and for there to be
an open shot before shooting.

pre_stroke The robot is moving to the chosen stroke’s prestroke position.

stroke The robot is in the middle of performing the hardcoded stroke and hitting the ball.

pre_recover The robot is moving from the stroke’s poststroke position to the hardcoded prerecov-
ery position.

recover The robot is moving from the prerecovery to the postrecovery position.

user The robot has exited the FSM loop and is under user control.

precycle

pre_stroke

recover

user

waiting stroke

pre_recover
User
types ‘u’

Move to
POST_RECOVER (22)

Move to
POST_RECOVER (10)

Ball is ready,
time > INIT_TIME,
valid stroke is found

Execute chosen
stroke (25)

Move to chosen
stroke’s starting con�guration (1)

Move to PREP_RECOVER (10)

Figure 5: Finite state machine diagram. Numbers in parantheses indicate the length of the state
transition in frames for the motion queue interpolator. If the user types ‘u’ in any state, the FSM
switches to the ‘user’ state.

4 Perception Strategy

The robot’s perception strategy is relatively unsophisticated because the problem is not as compli-
cated as the controls problem. This is largely because the perception problem is in one dimension,

5



the y dimension. The x coordinates of the goalies are fixed at 2.0, 2.5, and 3.0 for each of the
goalies, and the z coordinates are not used by the controller at all (but even if they were, they
too would be fixed at some constant value.) Furthermore, our robot does not need instantaneous
velocity estimates in any dimension, so our perception system does not return them.

Though the camera (and therefore the blob estimates) are noisy, we make the simplifying assump-
tion that the mode of the posterior predictive distribution occurs at the estimate itself (a valid
assumption given zero-mean, symmetric noise). This robot therefore does not take into account
any variances or covariances. The noise in the blob estimates seems to be relatively low, however,
and the curve fit does not fail, so state predictions are still very accurate.

4.1 Goalie state estimation

Figure 6: Diagram depicting the geometry used to calculate position from the list of blobs produced
by the blob detector. The numbers are in “pixel units”, though ultimately the units are irrelevant
because only ratios are used for calculation.

The y coordinate of a goalie can be estimated from its blob (Figure 6). Note that the x coordinate of
the camera maps linearly to the y world dimension. Furthermore, we know the camera’s position to
be at (−1.5,−.5, .25). Let (xc,yc) denote the center of the blob, xg denote the known x coordinate
of the goalie, ŷg denote our estimate of the goalie’s y position, and α be an unknown. Exploiting
the geometry of the situation and the fact that we know the distance to the goalie in the x world
dimension, we can drop the z world dimension and write

(−1.5,−.5)+α(160,160− xc) = (xg, ŷg) (1)

α =
xg +1.5

160
(2)

ŷg =−.5+α(160− xc) =−.5+
(

xg +1.5
160

)
(160− xc) (3)

6



4.2 Ball state estimation

The planning and controls algorithms detailed above do not actually need the ball’s current posi-
tion, but rather only whether or not the ball is ready to be struck. Therefore, in an effort to keep
the robot implementation as simple as possible, the state estimator hardcodes the blob attributes
when the ball is ready to be struck, and returns a nonsensical ball state if the blob attributes are not
within the hardcoded range.

5 Reflection

In testing, this robot seems to work very well. It gets a perfect score of 100 on all three levels
(easy, medium, hard). In building this robot, we were surprised by the difficulty of finding suitable
strokes in configuration space (i.e. we were surprised by the difficulty of the inverse kinematics).
The manual search for good strokes was very time-consuming and tedious, despite not being very
conceptually difficult.

This robot could be improved by increasing the number of hardcoded strokes, thus allowing it to
be able to exploit more holes. Furthermore, the path space could be searched more carefully to
find suitable strokes in configuration space, especially strokes that yield low-variance ball paths.
This search in stroke space could be improved by evaluating strokes automatically using some sort
of cost function, and highlighting the best paths for human evaluation.

This robot would face significant challenges if it were to be ported from this simulation to real life.
A real-life camera could suffer from non-zero-mean noise, which could throw off the curve fit.
The robot might not have perfect joint encoders, resulting in errors in the sensed and commanded
configurations. If the ground were not perfectly flat, then the ball paths might see more variance,
which will throw off the highly-tuned logic to determine whether a certain path is safe.

7


